Resolving enantiomers using the optical angular momentum of twisted light
نویسندگان
چکیده
Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy.
منابع مشابه
Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملOptical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light
We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angula...
متن کاملReading the orbital angular momentum of light using plasmonic nanoantennas
Orbital angular momentum of light has recently been recognized as a new degree of freedom to encode information in quantum communication using light pulses. Methods to extract this information include reversing the process by which such twisted light was created in the first place or interference with other beams. Here, we propose an alternative new way to directly read out the extra informatio...
متن کاملHanbury Brown and Twiss interferometry with twisted light.
The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities imprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of...
متن کامل1 Compton Scattering of a Twisted Light 2
The variation of photonic orbital angular momentum at Compton scattering is 7 characterized. We determine scattering matrix of a twisted light based on the fundamental 8 conservation of orbital angular momenta. Numerical values for two different twisted light modes: 9 Laguerre Gaussian and Bessel Gaussian, are generated and illustrated. Our analysis indicate that 10 states of photonic orbital a...
متن کامل